Chapter 5: A Closer Look at Membranes

Lipid Bilayer

- Cell membranes consist of a lipid bilayer containing different proteins
- Membrane is a continuous boundary layer that selectively controls the flow of substances across it

Lipid Bilayer

Fig. 5.3, pg. 76

Fluid Mosaic Model

 Every cell membrane has a mixed composition of phospholipids, glycolipids, sterols, and proteins

Studying Membranes

Stepped Art

Fig. 5.5a, pg. 77

Overview of Membrane Proteins

© 2006 Brooks/Cole - Thomson **Passive Active** Receptor Recognition **Proteins Proteins Transporters Transporters**

Transport Proteins

- Span the lipid bilayer
- Interior is able to open to both sides
- Change shape when they interact with solute
- Play roles in active and passive transport

Concentration Gradient

 Means the number of molecules or ions in one region is different than the number in another region

 In the absence of other forces, a substance moves from a region where it is more concentrated to one one where it's less concentrated - "down" gradient

Diffusion

 The net movement of like molecules or ions down a concentration gradient

 Although molecules collide randomly, the net movement is away from the place with the most collisions (down gradient)

http://www.youtube.com/watch?v=9QCxTf0QfTo

Diffusion

Stepped Art

Fig. 5.7a, p.80

Cell Membranes Show Selective Permeability

© 2006 Brooks/Cole - Thomson Fig. 5-8, p.80

Membrane Crossing: Overview I

Diffusion of lipid-soluble Substances across bilayer

Passive transport of watersoluble substances through channel protein; no energy input needed Active transport through ATPase; requires energy input from ATP

Membrane Crossing: Overview II

© 2006 Brooks/Cole - Thomson

Passive Transport

 Flow of solutes through the interior of passive transport proteins down their concentration gradients

 Passive transport proteins allow solutes to move both ways

Does not require any energy input

Active Transport

- Net diffusion of solute is against concentration gradient
- Transport protein must be activated
- ATP gives up phosphate to activate protein
- Binding of ATP changes protein shape and affinity for solute

Active Transport

- ATP gives up phosphate to activate protein
- Binding of ATP changes protein shape and affinity for solute

Active Transport

Fig. 5-11, p.83

Osmosis

Diffusion of water molecules across a selectively permeable membrane

- Direction of net flow is determined by water concentration gradient
- Side with the most solute molecules has the lowest water concentration

Tonicity

Refers to *relative* solute concentration of two fluids

Hypotonic - having fewer solutes

Hypertonic - having more solutes

Isotonic - having same amount

Tonicity and Osmosis

Endocytosis and Exocytosis

- Exocytosis: A cytoplasmic vesicle fuses with the plasma membrane and contents are released outside the cell
- Endocytosis: A small patch of plasma membrane sinks inward and seals back on itself, forming a vesicle inside the cytoplasm – membrane receptors often mediate this process

Endocytosis and Exocytosis

© 2006 Brooks/Cole - Thomson Fig. 5-15, p.86

Endocytosis of cholesterol

© 2006 Brooks/Cole - Thomson

extracellular fluid

© 2006 Thomson Higher Education

cytoplasm

http://www.youtube.com/watch?v=AYNwynwaALo